Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 102
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(23)2023 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-38067008

RESUMO

The role of bats in the global microbial ecology no doubt is significant due to their unique immune responses, ability to fly, and long lifespan, all contributing to pathogen spread. Some of these animals hibernate during winter, which results in the altering of their physiology. However, gut microbiota shifts during hibernation is little studied. In this research, we studied cultivable gut microbiota composition and diversity of Nyctalus noctula before, during, and after hibernation in a bat rehabilitation center. Gut microorganisms were isolated on a broad spectrum of culture media, counted, and identified with mass spectrometry. Linear modeling was used to investigate associations between microorganism abundance and N. noctula physiological status, and alpha- and beta-diversity indexes were used to explore diversity changes. As a result, most notable changes were observed in Serratia liquefaciens, Hafnia alvei, Staphylococcus sciuri, and Staphylococcus xylosus, which were significantly more highly abundant in hibernating bats, while Citrobacter freundii, Klebsiella oxytoca, Providencia rettgeri, Citrobacter braakii, and Pedicoccus pentosaceus were more abundant in active bats before hibernation. The alpha-diversity was the lowest in hibernating bats, while the beta-diversity differed significantly among all studied periods. Overall, this study shows that hibernation contributes to changes in bat cultivable gut microbiota composition and diversity.

2.
Int J Mol Sci ; 24(24)2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38139130

RESUMO

Bats are natural reservoirs for many emerging viral diseases. That is why their virome is widely studied. But at the same time, studies of their bacterial gut microbiota are limited, creating a degree of uncertainty about the role of bats in global microbial ecology. In this study, we analyzed gut microbiota of insectivorous Nyctalus noctula and Vespertilio murinus from rehabilitation centers from Rostov-on-Don and Moscow, respectively, and fructivorous Carollia perspicillata from the Moscow Zoo based on V3-V4 16S rRNA metagenomic sequencing. We revealed that microbial diversity significantly differs between the insectivorous and fructivorous species studied, while the differences between N. noctula and V. murinus are less pronounced, which shows that bats' gut microbiota is not strictly species-specific and depends more on diet type. In the gut microbiota of synanthropic bats, we observed bacteria that are important for public health and animal welfare such as Bacteroides, Enterobacter, Clostridiaceae, Enterococcus, Ureaplasma, Faecalibacterium, and Helicobacter, as well as some lactic acid bacteria such as Pediococcus, Lactobacillus, Lactococcus, and Weisella. All these bacteria, except for Bacteroides and Weisella, were significantly less abundant in C. perspicillata. This study provides a direct metagenomic comparison of synanthropic insectivorous and zoo fructivorous bats, suggesting future directions for studying these animals' role in microbial ecology.


Assuntos
Quirópteros , Microbioma Gastrointestinal , Animais , Microbioma Gastrointestinal/genética , RNA Ribossômico 16S/genética , Metagenoma , Bactérias/genética
3.
Artigo em Inglês | MEDLINE | ID: mdl-37855943

RESUMO

Ipsum vinum est potestas et possession (wine itself is power and possession). Wine is a complex system that triggers multisensory cognitive stimuli. Wine and its consumption are thoroughly intertwined with the development of human society. The beverage was appreciated in many ancient mythologies and plays an essential part in Christianity and rituals to this day. Wine has been said to enlighten and inspire artists and has even been prohibited by law and some religions, but has nevertheless played a role in human civilizations since the beginning. Winemaking is also a prospering and economically important industry and a longtime symbol of status and luxury. In winemaking, the formation of the final product is influenced by several factors that contribute to the chemical and sensory complexity often associated with quality vintages. Factors such as terroir, climatic conditions, variety of the grape, all aspects of the winemaking process to the smallest details, including metabolic processes carried out by yeast and malolactic bacteria, and the conditions for the maturation and storage of the final product, up to, and even beyond the point of deciding to open the bottle and enjoy the wine. In conjunction with the empiric and scientific process of winemaking, different molecules with antibacterial activity can be identified in wine during the production process, and several of them are clearly present in the final product. Some of these antibacterial components are phytochemicals, such as flavonoids and phenolic compounds, that may be delivered to the final product (wine) as a part of the grape, a variety of potential additive compounds, or from the oak barrels or clay amphoras used during the maturation process. Others are produced by yeasts and malolactic bacteria and play a role not only in the moderation of the fermentation process but contributing to the microbiological safety and beneficial properties spectra of the final product. Lactic acid bacteria, responsible for conducting malolactic fermentation, contribute to the final balance of the wine but are also directly involved in the production of different compounds exhibiting antibacterial activity. Some examples of these compounds include bacteriocins (antibacterial peptides), diacetyl, organic acids, reuterin, hydrogen peroxide, and carbon dioxide. Major aspects of these different beneficial metabolites are the subject of discussion in this review with the aim of highlighting their beneficial functions.

4.
Front Microbiol ; 14: 1241581, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779722

RESUMO

Pulque is a traditional Mexican non-distilled alcoholic beverage to which several beneficial functions are attributed, mainly associated with gastrointestinal health, which can be explained by the presence of probiotic bacteria in its microbiota. Therefore, the objective of this work was to evaluate the safety, probiotic activity, and functional characteristics of seven strains of lactic acid bacteria (LAB) isolated from pulque using the probiotic strain Lactobacillus acidophilus NCFM as control. The LAB isolates were identified by 16S rRNA sequencing and MALDI Biotyper® MS as belonging to three different Lactobacillaceae genera and species: Lactiplantibacillus plantarum, Levilactobacillus brevis and Lacticaseibacillus paracasei. Most strains showed resistance to gastric juice, intestinal juice and lysozyme (10 mg/L). In addition, all strains exhibited bile salt hydrolase (BSH) activity and antibacterial activity against the pathogenic strain Listeria monocytogenes. Additionally, cell surface characteristics of LAB were evaluated, with most strains showing good hydrophobicity, auto-aggregation, and co-aggregation towards enteropathogenic Escherichia coli and L. monocytogenes. In terms of safety, most of the strains were sensitive to the tested antibiotics and only the Lact. paracasei UTMB4 strain amplified a gene related to antibiotic resistance (mecA). The strains Lact. plantarum RVG2 and Lact. plantarum UTMB1 presented γ-hemolytic activity, and the presence of the virulence-related gene agg was identified only in UTMB1 strain. Regarding functional characterization, the tested bacteria showed good ß-galactosidase activity, antioxidant activity and cholesterol reduction Based on principal component analysis (PCA) and heat mapping, and considering the strain Lact. acidophilus NCFM as the probiotic reference, the strains Lacticaseibacillus paracasei UTMB4, Lactiplantibacillus plantarum RVG4 and Levilactobacillus brevis UTMB2 were selected as the most promising probiotic strains. The results of this study highlighted the probiotic, functional and safety traits of LAB strains isolated from pulque thus supporting the health benefits attributed to this ancestral beverage.

5.
Front Microbiol ; 14: 1107485, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065143

RESUMO

Background: It is known that the gut microbiome of a healthy person affects the process of COVID-19 after getting infected with SARS-CoV-2 virus. It is also believed that colchicine can alleviate the severity of COVID-19. Objective: Current investigations aimed to evaluate the associations between the baseline gut microbiota composition of healthy and Familial Mediterranean fever (FMF) - carrier Armenian men populations, and the severity of the COVID-19 disease after their infection with the SARS-CoV-2. The study has a purpose of answering three core questions: i. Do the characteristics of gut microbiome of Armenians affect the course of COVID-19 severity? ii. How does the COVID-19 disease course on go for FMF patients who have been taking colchicine as a medication over the years after getting infected with SARS-CoV-2? iii. Is there an initial gut micribiota structure pattern for non-FMF and FMF patients in the cases when COVID-19 appears in mild form? Methods: The gut microbiota composition in non-FMF and FMF patients before the first infection (mild and moderate course of COVID-19) was considered. COVID-19 was diagnosed by SARS-CoV-2 nucleic acid RT-PCR in nasopharyngeal swab and/or sputum. Results: The number of patients with male FMF with mild COVID-19 was approximately two times higher than that of non-FMF male subjects with COVID-19. In addition, an association of COVID-19 disease severity with the baseline gut Prevotella, Clostridium hiranonis, Eubacterium biforme, Veillonellaceae, Coprococcus, and Blautia diversities in the non-FMF and FMF populations were revealed by us, which can be used as risk/prognostic factor for the severity of COVID-19.

6.
Microorganisms ; 11(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36985169

RESUMO

The properties of intestinal bacteria/probiotics, such as cell surface hydrophobicity (CSH), auto-aggregation, and biofilm formation ability, play an important role in shaping the relationship between the bacteria and the host. The current study aimed to investigate the cell surface properties of fish intestinal bacteria and probiotics. Microbial adhesion to hydrocarbons was tested according to Kos and coauthors. The aggregation abilities of the investigated strains were studied as described by Collado and coauthors. The ability of bacterial isolates to form a biofilm was determined by performing a qualitative analysis using crystal violet staining based on the attachment of bacteria to polystyrene. These studies prove that bacterial cell surface hydrophobicity (CSH) is associated with the growth medium, and the effect of the growth medium on CSH is species-specific and likely also strain-specific. Isolates of intestinal lactobacilli from fish (Salmo ischchan) differed from isolates of non-fish/shrimp origin in the relationship between auto-aggregation and biofilm formation. Average CSH levels for fish lactobacilli and E. coli might were lower compared to those of non-fish origin, which may affect the efficiency of non-fish probiotics use in fisheries due to the peculiarities of the hosts' aquatic lifestyles.

7.
Microorganisms ; 11(3)2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36985176

RESUMO

Candida albicans is an important vaginosis causative agent, affecting several women worldwide each year. This study reports on two strains of lactic acid bacteria (Enterococcus mundtii CRL35 and Enterococcus faecium ST88Ch) expressing bacteriocin-like inhibitor substances (BLIS) active against C. albicans 1281. Both strains were γ-hemolytic and not affected by numerous antibiotics, contraceptives, and commercial drugs, suggesting safety for human use. The recorded antimicrobial activity of semi-purified BLIS was 25,600 AU/mL for E. mundtii CRL35 and 800 AU/mL for E. faecium ST88Ch. Treatment of BLIS with 1 mg/mL proteinase K resulted in complete loss of antimicrobial activity against Listeria monocytogenes ATCC 15313 and partial loss of activity against C. albicans 1281. The killing effect of the semi-purified BLIS on cell suspensions of C. albicans 1281 after 9 h of contact was dose-dependent: for E. mundtii CRL35, 400 AU/mL to 25,600 AU/mL caused 63.61% to 79.35% lysis, while for E. faecium ST88Ch, 200 AU/mL to 800 AU/mL caused 29.32% to 31.25% cell lysis. The effects of temperature, pH, and presence of the contraceptive Nordette-28 on the adsorption levels of the BLIS to C. albicans 1281 were also evaluated. Nordette-28 (10% or 20%) promoted increased adsorption of both studied BLIS to the cells of C. albicans 1281 at pH 5.0, while a minor effect was observed at pH 3.0. Different levels of aggregation between C. albicans 1281 and E. mundtii CRL35 or E. faecium ST88Ch were recorded, and optimal adsorption levels were recorded at 37 °C. Appropriate BLIS-producing strains can effectively contribute to the equilibrium of vaginal microbial status quo and reduce negative consequences from the development of C. albicans infections.

8.
Sci Rep ; 13(1): 2306, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759670

RESUMO

Coronaviruses (CoVs) pose a huge threat to public health as emerging viruses. Bat-borne CoVs are especially unpredictable in their evolution due to some unique features of bat physiology boosting the rate of mutations in CoVs, which is already high by itself compared to other viruses. Among bats, a meta-analysis of overall CoVs epizootiology identified a nucleic acid observed prevalence of 9.8% (95% CI 8.7-10.9%). The main objectives of our study were to conduct a qPCR screening of CoVs' prevalence in the insectivorous bat population of Fore-Caucasus and perform their characterization based on the metagenomic NGS of samples with detected CoV RNA. According to the qPCR screening, CoV RNA was detected in 5 samples, resulting in a 3.33% (95% CI 1.1-7.6%) prevalence of CoVs in bats from these studied locations. BetaCoVs reads were identified in raw metagenomic NGS data, however, detailed characterization was not possible due to relatively low RNA concentration in samples. Our results correspond to other studies, although a lower prevalence in qPCR studies was observed compared to other regions and countries. Further studies should require deeper metagenomic NGS investigation, as a supplementary method, which will allow detailed CoV characterization.


Assuntos
Quirópteros , Infecções por Coronavirus , Coronavirus , Animais , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/veterinária , Infecções por Coronavirus/genética , Genoma Viral , Filogenia , RNA
9.
Foods ; 11(19)2022 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-36230222

RESUMO

This review's objective was to critically revisit various research approaches for studies on the application of beneficial organisms and bacteriocins as effective biopreservatives in the food industry. There are a substantial number of research papers reporting newly isolated bacterial strains from fermented food products and their application as potential probiotics, including partial characterization of bacteriocins produced by these microorganisms. Most of these studies follow scientific community-accepted standard procedures and propose various applications of the studied strains and bacteriocins as potential biopreservatives for the food industry. A few investigations go somewhat further, performing model studies, exploring the application of expressed bacteriocins in a designed food product, or trying to evaluate the effectiveness of the studied potential probiotics and bacteriocins against foodborne pathogens. Some authors propose applications of bacteriocin producers as starter cultures and are exploring in situ bacteriocin production to aid in the effective control of foodborne pathogens. However, few studies have evaluated the possible adverse effects of bacteriocins, such as toxicity. This comes from well-documented reports on bacteriocins being mostly non-immunogenic and having low cytotoxicity because most of these proteinaceous molecules are small peptides. However, some studies have reported on bacteriocins with noticeable cytotoxicity, which may become even more pronounced in genetically engineered or modified bacteriocins. Moreover, their cytotoxicity can be very specific and is dependent on the concentration of the bacteriocin and the nature of the targeted cell. This will be discussed in detail in the present review.

10.
Front Vet Sci ; 9: 877360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35711797

RESUMO

Probiotics are known for their beneficial effects on poultry health and wellbeing. One promising strategy for discovering Bacillus probiotics is selecting strains from the microbiota of healthy chickens and subsequent screening for potential biological activity. In this study, we focused on three probiotic strains isolated from the gastrointestinal tract of chickens bred in different housing types. In addition to the previously reported poultry probiotic Bacillus subtilis KATMIRA1933, three strains with antimutagenic and antioxidant properties Bacillus subtilis KB16, Bacillus subtilis KB41, and Bacillus amyloliquefaciens KB54, were investigated. Their potential effects on broiler health, growth performance, and the immune system were evaluated in vivo. Two hundred newly hatched Cobb500 broiler chickens were randomly divided into five groups (n = 40). Four groups received a standard diet supplemented with the studied bacilli for 42 days, and one group with no supplements was used as a control. Our data showed that all probiotics except Bacillus subtilis KATMIRA1933 colonized the intestines. Treatment with Bacillus subtilis KB54 showed a significant improvement in growth performance compared to other treated groups. When Bacillus subtilis KB41 and Bacillus amyloliquefaciens KB54 were applied, the most significant immune modulation was noticed through the promotion of IL-6 and IL-10. We concluded that Bacillus subtilis KB54 supplementation had the largest positive impact on broilers' health and growth performance.

11.
Microorganisms ; 10(2)2022 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-35208805

RESUMO

The modern paradigm assumes that interspecies communication of microorganisms occurs through precise regulatory mechanisms. In particular, antagonism between bacteria or bacteria and fungi can be achieved by direct destruction of the targeted cells through the regulated production of antimicrobial metabolites or by controlling their adaptive mechanisms, such as the formation of biofilms. The quorum-quenching phenomenon provides such a countermeasure strategy. This review discusses quorum-sensing suppression by Gram-positive microorganisms, the underlying mechanisms of this process, and its molecular intermediates. The main focus will be on Gram-positive bacteria that have practical applications, such as starter cultures for food fermentation, probiotics, and other microorganisms of biotechnological importance. The possible evolutionary role of quorum-quenching mechanisms during the development of interspecies interactions of bacteria is also considered. In addition, the review provides possible practical applications for these mechanisms, such as the control of pathogens, improving the efficiency of probiotics, and plant protection.

12.
Microb Biotechnol ; 15(3): 874-885, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35170866

RESUMO

The gut microbiota plays a significant role in human health; however, the complex relationship between gut microbial communities and host health is still to be thoroughly studied and understood. Microbes in the distal gut contribute to host health through the biosynthesis of vitamins and essential amino acids and the generation of important metabolic by-products from dietary components that are left undigested by the small intestine. Aged citrus peel (Chenpi) is used in traditional Chinese medicine to lower cholesterol, promote weight loss and treat various gastrointestinal symptoms. This study investigated how the microbial community changes during treatment with Chenpi using the Simulator of the Human Intestinal Microbial Ecosystem (SHIME). Two preparations of Chenpi extract were tested: Chenpi suspended in oil only and Chenpi in a viscoelastic emulsion. Short-chain fatty acids (SCFAs) were measured during treatment to monitor changes in the microbial community of the colon presenting a decrease in production for acetic, propionic and butyric acid (ANOVA (P < 0.001) during the 15 days of treatment. 16S rRNA sequencing of microbial samples showed a clear difference between the two treatments at the different sampling times (ANOSIM P < 0.003; ADOSIM P < 0.002 [R2 = 69%]). Beta diversity analysis by PcoA showed differences between the two Chenpi formulations for treatment day 6. These differences were no longer detectable as soon as the Chenpi treatment was stopped, showing a reversible effect of Chenpi on the human microbiome. 16S rRNA sequencing of microbial samples from the descending colon showed an increase in Firmicutes for the treatment with the viscoelastic emulsion. At the genus level, Roseburia, Blautia, Subdoligranulum and Eubacterium increased in numbers during the viscoelastic emulsion treatment. This study sheds light on the anti-obesity effect of a polymethoxyflavone (PMFs)-enriched Chenpi extract and creates a foundation for the identification of 'obesity-prevention' biomarkers in the gut microbiota.


Assuntos
Medicamentos de Ervas Chinesas , Microbiota , Idoso , Clostridiales , Emulsões , Humanos , Obesidade , RNA Ribossômico 16S/genética
13.
Probiotics Antimicrob Proteins ; 14(6): 1094-1109, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35028920

RESUMO

The antimutagenic activity of probiotic strains has been reported over several decades of studying the effects of probiotics. However, this activity is rarely considered an important criterion when choosing strains to produce probiotic preparations and functional food. Meanwhile, the association of antimutagenic activity with the prevention of oncological diseases, as well as with a decrease in the spread of resistant forms in the microbiota, indicates its importance for the selection of probiotics. Besides, an antimutagenic activity can be associated with probiotics' broader systemic effects, such as geroprotective activity. The main mechanisms of such effects are considered to be the binding of mutagens, the transformation of mutagens, and inhibition of the transformation of promutagens into antimutagens. Besides, we should consider the possibility of interaction of the microbiota with regulatory processes in eukaryotic cells, in particular, through the effect on mitochondria. This work aims to systematize data on the antimutagenic activity of probiotics and emphasize antimutagenic activity as a significant criterion for the selection of probiotic strains.


Assuntos
Antimutagênicos , Microbiota , Probióticos , Probióticos/farmacologia , Antimutagênicos/farmacologia , Mutagênicos/farmacologia
14.
Crit Rev Microbiol ; 48(4): 513-530, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34620036

RESUMO

Representatives of the genus Bacillus are multifunctional microorganisms with a broad range of applications in both traditional fermentation and modern biotechnological processes. Bacillus spp. has several beneficial properties. They serve as starter cultures for various traditional fermented foods and are important biotechnological producers of enzymes, antibiotics, and bioactive peptides. They are also used as probiotics for humans, in veterinary medicine, and as feed additives for animals of agricultural importance. The beneficial effects of bacilli are well-reported and broadly acknowledged. However, with a better understanding of their positive role, many questions have been raised regarding their safety and the relevance of spore formation in the practical application of this group of microorganisms. What is the role of Bacillus spp. in the human microbial consortium? When and why did they start colonizing the gastrointestinal tract (GIT) of humans and other animals? Can spore-forming probiotics be considered as truly beneficial organisms, or should they still be approached with caution and regarded as "benefits with concerns"? In this review, we not only hope to answer the above questions but to expand the scope of the conversation surrounding bacilli probiotics.


Assuntos
Bacillus , Alimentos Fermentados , Probióticos , Animais , Bacillus/genética , Fermentação , Humanos , Esporos Bacterianos
15.
Pathogens ; 10(12)2021 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-34959528

RESUMO

Acinetobacter spp., the nosocomial pathogen, forms strong biofilms and is resistant to numerous antibiotics, causing persistent infections. This study investigates the antibacterial and anti-biofilm activity of polymyxin E alone and in combination with the cell-free supernatants (CFS) of the tested probiotic bacilli, Bacillus subtilis KATMIRA1933 and Bacillus amyloliquefaciens B-1895 against the selected Acinetobacter spp. starins. Three isolates of Acinetobacter spp., designated as Acinetobacter spp. isolate 1; Acinetobacter spp. isolate 2, and Acinetobacter spp. isolate 3, were collected from patients with burns, wounds, and blood infections, respectively. Bacterial identification and antibiotic susceptibility testing were conducted using the VITEK2 system. Auto-aggregation and coaggregation of the tested bacilli strains with the selected Acinetobacter spp. isolates were evaluated. A disk diffusion assay was used to identify the microorganism's susceptibility to the selected antibiotics, alone and in combination with the CFS of the bacilli. The MIC and MBIC (minimum inhibitory and minimum biofilm inhibitory concentrations) of polymyxin E combined with bacilli CFS were determined. Acinetobacter spp. isolates were (i) sensitive to polymyxin E, (ii) able to form a strong biofilm, and (iii) resistant to the tested antibiotics and the CFS of tested bacilli. Significant inhibition of biofilm formation was noticed when CFS of the tested bacilli were combined with polymyxin E. The bacilli CFS showed synergy with polymyxin E against planktonic cells and biofilms of the isolated pathogens.

16.
Sci Rep ; 11(1): 21075, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34702917

RESUMO

Bats are potential natural reservoirs for emerging viruses, causing deadly human diseases, such as COVID-19, MERS, SARS, Nipah, Hendra, and Ebola infections. The fundamental mechanisms by which bats are considered "living bioreactors" for emerging viruses are not fully understood. Some studies suggest that tolerance to viruses is linked to suppressing antiviral immune and inflammatory responses due to DNA damage by energy generated to fly. Our study reveals that bats' gut bacteria could also be involved in the host and its microbiota's DNA damage. We performed screening of lactic acid bacteria and bacilli isolated from bats' feces for mutagenic and oxidative activity by lux-biosensors. The pro-mutagenic activity was determined when expression of recA increased with the appearance of double-strand breaks in the cell DNA, while an increase of katG expression in the presence of hydroxyl radicals indicated antioxidant activity. We identified that most of the isolated bacteria have pro-mutagenic and antioxidant properties at the same time. This study reveals new insights into bat gut microbiota's potential involvement in antiviral response and opens new frontiers in preventing emerging diseases originating from bats.


Assuntos
Quirópteros/virologia , Microbioma Gastrointestinal , Mutagênicos , Animais , Antioxidantes/metabolismo , Antivirais , Bacillus , Proteínas de Bactérias/genética , Técnicas Biossensoriais , COVID-19 , DNA , Dano ao DNA , Reservatórios de Doenças/virologia , Escherichia coli/metabolismo , Fezes , Sistema Imunitário , Inflamação , Ácido Láctico/metabolismo , Espectrometria de Massas , Mutagênese , Estresse Oxidativo , Recombinases Rec A/metabolismo , SARS-CoV-2 , Vírus/isolamento & purificação , Zoonoses/virologia
17.
Enzyme Microb Technol ; 150: 109861, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34489020

RESUMO

Food contamination such as toxins and heavy metals has been increasing in the last few decades as a result of industrialization in general and as part of food production in particular. Application of microorganisms in toxins and heavy metals bio-removal has been documented and applied as a favorable decontamination approach due to being environmentally friendly, reasonably simple, and economically feasible. Lactobacilli have been proposed and applied as a beneficial biologic sorbent for toxins and heavy metals in processes of reducing their hazardous bio-availability. The purpose of this review is to summarize the known role of Lactobacillus bacterial species in food bio-decontamination processes. After a quick glimpse of the worthy properties of lactobacilli, their cell wall structure is mentioned. Then the potential role of Lactobacillus strains for mycotoxins (aflatoxins, patulin, ochratoxin A, fumonisins, zearalenone, cyanotoxins, and trichothecenes) and heavy metals (lead, arsenic copper, mercury, cadmium, zinc, aluminum, chromium, and iron) bio-removal were described. In addition, the role of various factors in removal yield and the decontamination mechanism were explained. Finally, the lactobacilli-contaminant stability, in vivo studies, and being a friend or foe of Lactobacillus bacteria are discussed.


Assuntos
Metais Pesados , Micotoxinas , Descontaminação , Contaminação de Alimentos , Lactobacillus
18.
Biotechnol Adv ; 53: 107834, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34509601

RESUMO

Haloarchaea are adapted to survive under extreme saline conditions by accumulating osmolytes and salts to counteract the high osmotic pressure in their habitats. As a consequence, their proteins have evolved to remain active, or even most active, at very high ionic strength. Halocins are proteinaceous antimicrobial substances that are ribosomally-synthesized by haloarchaea and they provide the producers an advantage in the competition for nutrients and ecological niches. These antimicrobials are stable at high temperature, elevated salt concentrations, and alkaline pH conditions. These properties have endowed them with great potential in diverse biotechnological applications, which involve extreme processing conditions (such as high salt concentrations, high pressure, or high temperatures). They kill target cells by inhibition of Na+/H+ antiporter in the membrane or modification/disruption of the cell membrane leading to cell lysis. In general, the taxonomy of haloarchaea and their typical phenotypic and genotypic characteristics are well studied; however, information regarding their halocins, especially aspects related to genetics, biosynthetic pathways, mechanism of action, and structure-function relationship is very limited. A few studies have demonstrated the potential applications of halocins in the preservation of salted food products and brine-cured hides in leather industries, protecting the myocardium from ischemia and reperfusion injury, as well as from life-threatening diseases such as cardiac arrest and cancers. In recent years, genome mining has been an essential tool to decipher the genetic basis of halocin biosynthesis. Nevertheless, this is likely the tip of the iceberg as genome analyses have revealed many putative halocins in databases waiting for further investigation. Identification and characterization of this source of halocins may lead to antimicrobials for future therapeutics and/or food preservation. Hence, the present review analyzes different aspects of halocins such as biosynthesis, mechanism of action against target cells, and potential biotechnological applications.


Assuntos
Anti-Infecciosos , Archaea , Antibacterianos , Anti-Infecciosos/farmacologia , Cloreto de Sódio
19.
Probiotics Antimicrob Proteins ; 13(6): 1696-1708, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34427880

RESUMO

The use of novel and effective probiotic-based immunostimulating preparations, prebiotics, metabiotics, and phytobiotics is considered as a promising direction for the creation of new complex feed additives for aquaculture enterprises to increase the health and productivity of the cultivated hydrobionts. The information on the products of anaerobic solid-phase fermentation of plant substrates is presented as the basis for new probiotic-based additives for aquacultures. Biologically active feed additives ProStor and GerbaStor containing probiotics and medicinal herbs and their effects on aquaculture are discussed. Specific features of their application in aquatic environments with targeted action on hydrobionts are analyzed.


Assuntos
Aquicultura , Probióticos , Ração Animal
20.
Vet Microbiol ; 261: 109156, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34388682

RESUMO

Probiotics development for animal farming implies thorough testing of a vast variety of properties, including adhesion, toxicity, host cells signaling modulation, and immune effects. Being diverse, these properties are often tested individually and using separate biological models, with great emphasis on the host organism. Although being precise, this approach is cost-ineffective, limits the probiotics screening throughput and lacks informativeness due to the 'one model - one test - one property' principle. There is а solution coming from human-derived cells and in vitro systems, an extraordinary example of human models serving animal research. In the present review, we focus on the current outlooks of employing human-derived in vitro biological models in probiotics development for animal applications, examples of such studies and the analysis of concordance between these models and host-derived in vivo data. In our opinion, human-cells derived screening systems allow to test several probiotic properties at once with reasonable precision, great informativeness and less expenses and labor effort.


Assuntos
Criação de Animais Domésticos , Biomarcadores , Interações entre Hospedeiro e Microrganismos , Probióticos , Criação de Animais Domésticos/métodos , Criação de Animais Domésticos/tendências , Animais , Células Cultivadas , Interações entre Hospedeiro e Microrganismos/fisiologia , Humanos , Modelos Biológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...